首页> 外文OA文献 >Modeling Spread of Preferences in Social Networks for Sampling-based Preference Aggregation
【2h】

Modeling Spread of Preferences in Social Networks for Sampling-based Preference Aggregation

机译:基于抽样的社交网络中偏好的传播建模   偏好聚合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given a large population, it is an intensive task to gather individualpreferences over a set of alternatives and arrive at an aggregate or collectivepreference of the population. We show that social network underlying thepopulation can be harnessed to accomplish this task effectively, by samplingpreferences of a small subset of representative nodes. We first develop aFacebook app to create a dataset consisting of preferences of nodes and theunderlying social network, using which, we develop models that capture howpreferences are distributed among nodes in a typical social network. We hencepropose an appropriate objective function for the problem of selecting bestrepresentative nodes. We devise two algorithms, namely, Greedy-min whichprovides a performance guarantee for a wide class of popular voting rules, andGreedy-sum which exhibits excellent performance in practice. We compare theperformance of these proposed algorithms against random-polling and popularcentrality measures, and provide a detailed analysis of the obtained results.Our analysis suggests that selecting representatives using social networkinformation is advantageous for aggregating preferences related to personaltopics (e.g., lifestyle), while random polling with a reasonable sample size isgood enough for aggregating preferences related to social topics (e.g.,government policies).
机译:在人口众多的情况下,要收集一组替代方案的个人偏好并得出总体的或集体的偏好是一项艰巨的任务。我们显示,可以通过对代表性节点的一小部分样本的偏好进行采样,来利用人口基础的社交网络有效地完成此任务。我们首先开发一个Facebook应用程序,以创建一个由节点首选项和底层社交网络组成的数据集,并使用该应用程序开发模型来捕获偏好在典型社交网络中节点之间的分布方式。因此,我们针对选择最佳代表节点的问题提出了适当的目标函数。我们设计了两种算法,分别是Greedy-min和Greed-sum,Greedy-min为各种各样的流行投票规则提供性能保证,Greedy-sum在实践中表现出出色的性能。我们比较了这些提出的算法与随机投票和大众集中度措施的性能,并提供了对所得结果的详细分析。我们的分析表明,使用社交网络信息选择代表有利于汇总与个人主题(例如生活方式)相关的偏好,而随机以合理的样本量进行轮询足以汇总与社会主题(例如政府政策)相关的偏好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号